Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Concept and results of new operation scheme with improved control system for radio frequency heating in JT-60U

Moriyama, Shinichi; Shinozaki, Shinichi

Japanese Journal of Applied Physics, Part 1, 44(8), p.6224 - 6229, 2005/08

 Times Cited Count:1 Percentile:4.7(Physics, Applied)

The control system of RF heating system in JT-60U has been improved with a concept of dispersion processing and featuring a real time waveform shaping method. It is proper that the brand-new, dispersion processing system has higher performance and reliability than old single processor system before modification, however it is worthy of mention that improvement on operation roll sharing, using the real time waveform shaping, has enabled more efficient and smooth operation. The typical roll sharing is that a simple rectangular waveform of the RF heating power is set by the experiment operator, and the waveform is re-shaped with the parameter set by the RF operator who knows deeply the condition of the RF system at that time. The simple and flexible composition of the new control system will also enable further improvement of hardware to enhance plasma performance that is inevitable to the devices for fusion experiment.

Journal Articles

Operational progress of the 110GHz-4MW ECRF heating system in JT-60U

Fujii, Tsuneyuki; Seki, Masami; Moriyama, Shinichi; Terakado, Masayuki; Shinozaki, Shinichi; Hiranai, Shinichi; Shimono, Mitsugu; Hasegawa, Koichi; Yokokura, Kenji; JT-60 Team

Journal of Physics; Conference Series, 25, p.45 - 50, 2005/00

The JT-60U electron cyclotron range of frequency (ECRF) is utilized to realize high performance plasma. Its output power is 4 MW at 110 GHz. By controlling the anode voltage of the gyrotron used in the JT-60U ECRF heating system, the gyrotoron output can be controlled. Then, the anode voltage controller was developed to modulate the injected power into plasmas. This low cost controller achieved the modulation frequency 12 - 500 Hz at 0.7 MW. This controller also extended the pulse width from 5s to 16 s at 0.5 MW. For these long pulses, temperature rise of the DC break made of Alumina ceramics is estimated. Its maximum temperature becomes $$sim$$ 140 deg. From the analysis of this temperature rise, DC break materials should be changed to low loss materials for the objective pulse width of 30 s. The stabilization of neoclassical tearing mode (NTM) was demonstrated by ECRF heating using the real-time system in which the ECRF beams are injected to the NTM location predicted from ECE measurement every 10 ms.

Journal Articles

VME and network applications for the JT-60U control system

Kimura, Toyoaki

Nuclear Instruments and Methods in Physics Research A, 352, p.125 - 127, 1994/00

 Times Cited Count:1 Percentile:27.58(Instruments & Instrumentation)

no abstracts in English

JAEA Reports

Quality control of the software in the JT-60 computer control system

*; Kurihara, Kenichi; Kimura, Toyoaki

JAERI-M 90-114, 28 Pages, 1990/07

JAERI-M-90-114.pdf:1.09MB

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1